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ABSTRACT
The detection of Multiple Sclerosis (MS) lesions in Mag-

netic Resonance (MR) images remains an important issue in
medical image processing. Diagnostic criteria for MS based
on brain MRI concern mainly dissemination in space and
time. In this context, this paper describes a novel region-
based approach to automatically count the number of MS
lesions present in a set of MR images. Given a set of candi-
date regions obtained with a mean-shift based segmentation,
the detection algorithm decides for each region if it is part
of a MS lesion or if it belongs to non-pathologic regions
(white matter (WM), grey matter (GM) or cerebro-spinal
fluid (CSF)). The distribution of each brain tissue is modeled
using a Gaussian Mixture Model and MS lesions are detected
as outliers with respect to this model. Finally, we propose
several criteria for segmentation assessment and we validate
our algorithm on the BrainWeb data set. Preliminary results
on clinical data are also shown.

Index Terms— MRI, a contrario Framework, Brain Seg-
mentation, Multiple Sclerosis Lesions

1. INTRODUCTION

Magnetic Resonance Imaging (MRI) is currently fundamental
for the monitoring and diagnosis of multiple sclerosis (MS).
New diagnostic criteria for MS integrating MRI assessment
with clinical methods were introduced in 2001 (the so-called
“McDonald Criteria”) and were recently revised to simplify
and speed diagnosis, whereas maintaining sensitivity and
specificity [P05]. A key point of these criteria concern the
dissemination in space by MRI evidence (i.e. the number of
MS lesions) and not the lesion load. Therefore, an automatic
segmentation system able to determine the number of MS
lesions appears to be very useful for diagnosis.
MS lesion segmentation task is usually performed us-

ing statistical voxel-based intensity modeling [V01, ZFE02,
AAPH+05]. The intensity of normal brain tissues is usu-
ally modeled by mixture of Gaussian probability distribution
functions. The model consists of a Gaussian per tissue type
and lesions are considered as outlier voxels. Noise removal,
atlas registration techniques or local regularization (using

Hidden Markov Random Field (HMRF)) can be used to im-
prove the results, but choice of the threshold to decide which
voxels correspond to outliers remains manual.
Recently, a region-based method have been proposed for

brain segmentation task [JMY06] using a maximum a pos-
teriori approach for region labeling. Less sensitive to noise,
such approach is expected to be more robust than pixel-based
methods to segment brain tissues structures, tumors or le-
sions. In this work, we propose to investigate the use of a
region-based approach for MS lesion segmentation in MRI.
An original unsupervised approach based on the a contrario
framework is presented in this paper. The a contrario ap-
proach, recently developed by Desolneux et al. [DMM03], is
a mathematical formalization of a perceptual grouping princi-
ple which has been successfully applied to various detection
problems in computer vision: the detection of alignments and
edges [DMM03], vanishing points [ADV03] or motion detec-
tion [VCB06].
Magnetic Resonance Imaging (MRI) is widely used for

both qualitative and quantitative analysis of MS over time.
Since MS lesions exhibit different appearances depending on
the type of MR images (T1-weighted, T2-weighted, FLAIR),
image processing algorithms have to integrate complemen-
tary information available in multimodal data. Considering
multiple MR sequences (T1-weighted, T2-weighted, T2-
weighted FLAIR), brain tissues are segmented into three
classes : WM, GM and CSF. Distribution parameters are then
used to automatically extract MS lesion regions based on the
a contrario decision framework.

2. SEGMENTATION ALGORITHM

2.1. Parametric Model of Brain Tissues

In this paper, we assume that the distribution of each brain
tissue (WM, GM, CSF) can be well approximated by a Gaus-
sian law. Considering m different image modalities simulta-
neously, the intensity vector of each voxel xi is modeled by a
Gaussian Mixture Model (GMM):

p(xi|Θ) =
k∑

j=1

αj
(2π)m/2√

|Σj |
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where k is the number of mixture components,Θ = (α, μ,Σ)
being the hyperparameters of the GMM (αj the mixture pro-
portions, μj and Σj are the mean vectors and covariance ma-
trices of the multivariate Gaussian laws). Parameters Θ of
the finite GMM are estimated within the well-defined statisti-
cal framework based on the Maximum Likelihood Estimator
(MLE) using the Expectation-Maximization (EM) algorithm
as optimization method and HMRF for local regularization.
Based on the estimated GMM of WM, GM and CSF at this
step, we will be able to detect MS lesions as outlier regions
with respect to the GMM.

2.2. Candidate Regions: Mean-Shift Segmentation

The approach we propose in this paper is based on analy-
sis of image regions. To obtain candidate regions, we use
the mean shift algorithm which is a non-parametric iterative
mode-seeking algorithm [FH75] successfully applied in many
image processing applications. Let {xi}i be a set of n points
in Rd, a d-dimensional space. We denote by f̂(x) the mul-
tivariate density kernel estimate computed at point x as fol-
lows:

f̂(x) =
1

nhd

n∑
i=1

K

(
x − xi

h

)
(2)

where K(x) is the kernel and h the window radius. The op-
timal kernel yielding minimal mean integrated square error is
the multivariate Epanechnikov kernel. Its expression is given
by:

KE(x) =

{
1
2c−1

d (d + 2)(1 − ‖x‖2) if ‖x‖ < 1
0 otherwise

(3)

where cd is the volume of the unit d-dimensional sphere. The
mean-shift procedure consists in modifying each point xi it-
eratively until convergence using the following equation:

x
(t+1)
i = x

(t)
i + m(x

(t)
i ) where m(x) =

h

d + 2

∇̂f(x)

f̂(x)
.

Candidate regions are then determined using the dynamic
mean shift algorithm proposed by [ZKT06].

2.3. The a contrario framework

The a contrario approach is a mathematical formalization of
a perceptual grouping principle. Its application to image anal-
ysis has been developed by Desolneux et al. [DMM03]. In
our context within the a contrario framework, the observa-
tion model in the absence of outliers is called the a contrario
model. The purpose of the a contrariomodel is to define out-
liers (e.g. MS lesion regions) as events of very low probabil-
ity. Mathematically, this has been formalized by Desolneux
et al. [DMM03] as follows: An event of type ”such configura-
tion of geometric objects has such property” is ε-meaningful

if the expectation of the number of occurrences of this event
is less than ε under the uniform random assumption.
Let F denote the inverse cumulative probability distribu-

tion function of a changemeasureX under the null hypothesis
H0 (no lesion). This function is defined as F (ν) = P (X >

ν), the probability that the local measure exceeds a given
threshold ν under H0. Let νi , i = 1, ..., Nν be a set of Nν

thresholds. Let R be a region of n independent voxels. Let ki

denote the observed number of points (in region R) at which
the measure exceeds νi. Considering the event Eνi,R = ”at
least ki points of the region R of size n assume an obser-
vation measure larger than threshold νi“, the probability of
event Eνi,R is

P (Eνi,R) =
n∑

j=ki

(
n

j

)
F (νi)

j(1 − F (νi))
n−j (4)

(i.e. the tail of the binomial distribution). It is important to
note that the event Eν,R is defined considering a region of
points. This means that the decision takes into account spatial
context. Considering NR regions in the image, a region R is
said to be ε-meaningful if:

NR.Nν . min
i

P (Eνi,R) ≤ ε (5)

The quantityNR.Nν . mini P (Eνi,R) is called the ”Num-
ber of False Alarms” (NFA) in the a contrario framework.
The NFA corresponds to the expectation of false alarms un-
derH0. In practice, ε is often set to 1, meaning that one false
alarm on average is expected in the a contrario model when
testing NR regions and Nν thresholds [DMM03]. In our pre-
vious work [RFHA+07], we have shown that it is possible
to modify Equation 5 in order to get a more flexible decision
threshold, using for instance the False Discovery Rate pro-
posed by Benjamini and Hochberg [BH95].
Partial volume artefacts are a well-known issue when us-

ing GMM to model brain tissues. These artefacts are taken
into account by replacing in Equation 4 ki by k(V ar(xi))
which is a function of the local variance at the voxel xi. The
higher the local variance, the lower the value of k(V ar(xi)).
In the context of MS lesion segmentation, the probability

density function of the a contrario model is known and cor-
responds to the estimated GMM. To determine automatically
the threshold ν, we consider that a voxel xi is an outlier of
the GMM by computing the Mahalanobis distance δ(xi, cj)
between xi and each class cj of the estimated finite GMM:
δ(xi, cj) = (xi − μj)

T Σ−1
j (xi − μj). δ(xi, cj) gives a mea-

sure of how the voxel xi fits the model. The Mahalanobis dis-
tance under some assumptions on the noise distributions and
some first-order approximations, is a random variable with a
χ2 probability distribution. By consulting a table of values of
the χ2 distribution, it is then easy to determine a confidence
level ε for δ corresponding to, for instance a 95% probability
of having the distance δ less than ε. A voxel xi is considered
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Fig. 1. (a) : BrainWeb T2-weighted image with severe simulated MS lesions, (b) : crisp lesions, (c) : binary mask of fuzzy
lesions, (d) : result with the proposed region-based approach.

as an outlier if it does not fit the model for every class cj of the
GMM. Then, we compute for each region the probability of
event Eν,R and we are able to decide whether the considered
region is an outlier or not.

3. EXPERIMENTS

One of the main problems in validating automatic algorithms
for change detection is the lack of gold standard. To eval-
uate our approach, we first use simulated images from the
BrainWeb simulator [CKKE97]. We evaluate the proposed
approach using BrainWeb T2-weighted and T1-weighted syn-
thetic 3D MR images with three types of lesions (mild, mod-
erate, severe), 3% noise level and 1mm slice thickness (see
for instance Figure 1).
The kappa index (KI) is usually used to evaluate a seg-

mentation algorithm: KI(R, GT ) �
2�(R∩GT )
�R+�GT . GT stands

for the ground truth map, R is the segmentation result. This
index provides information about overlap between segmenta-
tion results and a ground truth. However, boundaries of MS
lesions are often unclear. Concerning BrainWeb simulated
MR images, MS lesions are simulated using smooth profiles.
A crisp version C and a fuzzy version F of MS lesions are
provided. Computing the KI between segmentation results
and C may introduce a bias in the evaluation of the segmenta-
tion algorithm, since C is an under-estimation of lesion load.
As it shown in Figure 1, the use of the binary masks of C or
F will lead to very different values of KI. It appears that the
single value of KI is not enough to evaluate a lesion segmen-
tation algorithm. Moreover, the value of KI is very dependent
on the size of segmented regions.
A satisfactory resultR of a segmentation algorithm can be

defined by the two following conditions: 1) v ∈ C ⇒ v ∈ R,
2) v ∈ R ⇒ v ∈ F . Thus, we propose to evaluate the
segmentation results using the following criteria: KI(R, C),
maxi{KIi(R,Fi)} where Fi is a binary map of F using
threshold i, number of undetected connected components (i.e.

lesions) with respect to C, number of connected components
which are false alarms with respect to F . Results are pre-
sented in Table 1. In the context of the revised “McDonald
Criteria” for MS diagnosis, it is fundamental to estimated the
dissemination in space of MS lesions. Since the KI is very de-
pendent on the lesion size, analysis of lesion segmentation as
connected components is more adapted. Results show good
performances of the algorithm on the BrainWeb data set.
The algorithm has been tested on our clinical database.

MR data sets were acquired on a Philips scanner (T1-
weighted: repetition time (TR) TR = 21ms, echo time
(TE) TE = 3.75ms, 2mm slice thickness; FLAIR: TR =
11909ms, TE = 100ms, inversion time (TI) TI = 2000ms,
2mm slice thickness). Before applying the proposed method,
we use the following preprocessing steps: bias-field correc-
tion with the N3 algorithm [SZE98], brain extraction with the
BET algorithm [S02] and affine registration to ensure spatial
correspondance. The method shows good results as presented
in Figure 2.

4. CONCLUSION

We have proposed in this paper a new region-based approach
relying on the original a contrario framework to detect MS le-
sions as outliers of a model of brain tissue intensities in multi-
modal MR data. We have also pointed out that the evaluation
of MS lesion segmentation is not straightforward and should
be done carefully. Future work focuses on on-going valida-
tion studies and the incorporation of particular knowledge of
MS lesion locations using statistical atlases.
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Fig. 2. Clinical data. (a) : Flair image, (b) : T1-weighted image, (c) : resulting mask of MS lesions.
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